新城門プロジェクト 第8回 図形と方程式

練習問題 1.

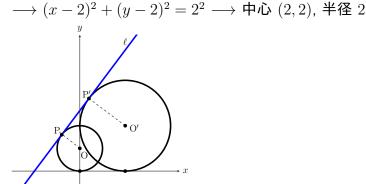
円 O と円 O' の方程式をそれぞれ $x^2+y^2-2y=0,\ x^2+y^2-4x-4y+4=0$ とする。 傾きが 0 でない直線 ℓ が円 O と O' にそれぞれ点 $P,\ P'$ で接する とき, ℓ の方程式と $P,\ P'$ の座標を求めよ。

練習問題 1. 解答

それぞれの円の中心と半径は

円 O:
$$x^2 + y^2 - 2y = 0$$

 $\longrightarrow x^2 + (y-1)^2 = 1^2 \longrightarrow$ 中心 $(0,1)$, 半径 1
円 O': $x^2 + y^2 - 4x - 4y + 4 = 0$



直線 ℓ の方程式を $y=mx+n\;(m\neq 0)$ とする。 円の中心から接線 ℓ までの距離は半径に等しい。

点と直線の距離

点 $P(x_1, y_1)$ と直線 ax + by + c = 0 との距離 d は

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

$$\begin{cases} \frac{|m \cdot 0 - 1 + n|}{\sqrt{m^2 + 1}} = 1\\ \frac{|m \cdot 2 - 2 + n|}{\sqrt{m^2 + 1}} = 2 \end{cases}$$

$$\begin{cases} |n-1| = \sqrt{m^2+1} \\ |2m+n-2| = 2\sqrt{m^2+1} \end{cases}$$
 $2|n-1| = |2m+n-2|$ 図より, $m>0$, $n>2$ であるから $2(n-1) = 2m+n-2$ $n=2m$ $|2m-1| = \sqrt{m^2+1}$ $(2m-1)^2 = m^2+1$ $3m^2-4m=0$ $m=0,\,\frac{4}{3}$ であるが, $m\neq 0$ なので $m=\frac{4}{3}$ したがって,直線 ℓ の方程式は $y=\frac{4}{3}x+\frac{8}{3}$

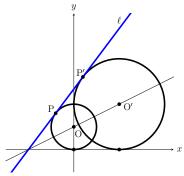
$$y = \frac{4}{3}x + \frac{8}{3}$$
 と円 O, O'の接点 P, P'の座標は、
$$\begin{cases} x^2 + (y-1)^2 = 1^2 \\ y = \frac{4}{3}x + \frac{8}{3} \end{cases} \qquad \begin{cases} (x-2)^3 \\ y = \frac{4}{3}x \end{cases}$$

$$x^2 + (\frac{4}{3}x + \frac{5}{3})^2 = 1 \qquad (x-2)^2 - \frac{4}{3}x \end{cases}$$

$$25x^2 + 40x + 16 = 0 \qquad 25x^2 - 20$$

$$x = -\frac{4}{5}$$
 より
$$x = \frac{2}{5}$$
 より
$$P(-\frac{4}{5}, \frac{8}{5})$$

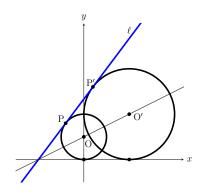
$$P'(\frac{2}{5}, \frac{16}{5})$$



2円○,○′の中心を通る直線と,2本の共通接線は1点で交わる。

2 円の中心 (0,1),(2,2) を通る直線は $y=\frac{1}{2}x+1$

x軸との交点は(-2,0)なので、直線 ℓ は(-2,0)を通る。



円の接線

円
$$(x-a)^2+(y-b)^2=r^2$$
 上の点 $(x_1,\ y_1)$ における接線の方程式は

$$(x_1 - a)(x - a) + (y_1 - b)(y - b) = r^2$$

$$P(x_1, y_1)$$
 とする。 P を通る円 O の接線は $x_1x + (y_1 - 1)(y - 1) = 1^2$ と表せる。これが $(-2,0)$ を通るので, $-2x_1 - y_1 + 1 = 1$ $y_1 = -2x_1$ P は円 O 上の点なので, $x_1^2 + (-2x_1 - 1)^2 = 1^2$ $5x_1^2 + 4x_1 = 0$ $x = 0, -\frac{4}{5}$ したがって, $P(-\frac{4}{5}, \frac{8}{5})$

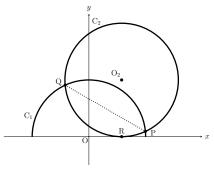
$$P'(x_2,\ y_2)$$
 とする。 P' を通る円 O' 接線は $(x_2-2)(x-2)+(y_2-2)(y-2)=2^2$ と表せる。 これが $(-2,0)$ を通るので, $-4x_2+8-2y_2+4=4$ $y_2=-2x_2+4$ P' は円 O' 上の点なので, $(x_2-2)^2+(-2x_2+4-2)^2=2^2$ $5x_2^2-12x_2+4=0$ $x=2,\ \frac{2}{5}$ したがって, $P'(\frac{2}{5},\ \frac{16}{5})$

練習問題 2.

xy 平面上の原点を O とし、半円 $x^2 + y^2 = 9$, $y \ge 0$ を C_1 とおく。半円 C_1 の周上に 2 点 P,Q をとり、弦 PQ を軸として、弧 PQ を折り返し、点 $R(\sqrt{3},0)$ で x 軸に接するようにする。

- (1) 折り返した円弧を円周の一部にもつ円を C_2 とする。円 C_2 の 方程式を求めよ。
- (2) 3点 P,O,Q を通る円を C_3 とする。円 C_3 の中心の座標および半径を求めよ。
- (3) 円 C_2 の周上に点 A を、円 C_3 の周上に点 B をとるとき、線分 AB の長さの最大値を求めよ。

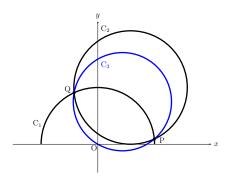
練習問題 2. 解答 (1)



円 $C_1: x^2 + y^2 = 3^2$ の半径は 3。 円 C_2 は点 $R(\sqrt{3},0)$ で x 軸に接するので,中心は直線 $x = \sqrt{3}$ 上にある。また,円 C_2 は円 C_1 を折り返した円なので半径は 3である。

したがって,円 C_2 の中心の座標は $(\sqrt{3},3)$ であるので,方程式は $(x-\sqrt{3})^2+(y-3)^2=3^2$ である。

練習問題 2. 解答 (2)

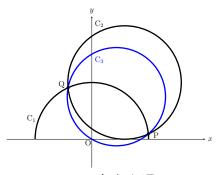


2円の交点を通る円

2 円 $x^2+y^2+lx+my+n=0, \ x^2+y^2+l'x+m'y+n'=0$ の 交点を通る円は

$$(x^2+y^2+lx+my+n)+k(x^2+y^2+l'x+m'y+n')=0$$
 $k=-1$ のときは、交点を通る直線を表す。

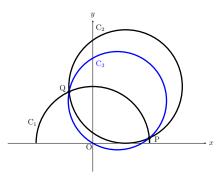
練習問題 2. 解答 (2)



円 C_1 , C_2 の交点を通る円は $\left\{(x-\sqrt{3})^2+(y-3)^2-3^2\right\}+k(x^2+y^2-3^2)=0$ と表せる。

これが原点(0,0) を通るから,3-9k=0 より $k=rac{1}{3}$

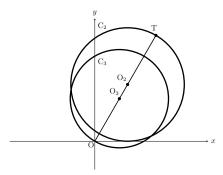
練習問題 2. 解答 (2)



円 C3 の方程式は

$$\left\{ (x - \sqrt{3})^2 + (y - 3)^2 - 3^2 \right\} + \frac{1}{3} (x^2 + y^2 - 3^2) = 0$$
$$\left(x - \frac{3\sqrt{3}}{4} \right)^2 + \left(y - \frac{9}{4} \right)^2 = \left(\frac{3\sqrt{3}}{2} \right)^2$$

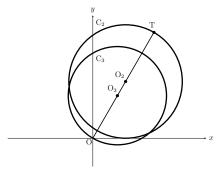
練習問題 2. 解答 (3)



円
$$C_2$$
, C_3 の中心はそれぞれ $(\sqrt{3},\ 3),\ \left(rac{3\sqrt{3}}{4},\ rac{9}{4}
ight)$ でるから,

中心間の距離は
$$\sqrt{\left(\sqrt{3}-\frac{3\sqrt{3}}{4}\right)^2+\left(3-\frac{9}{4}\right)^2}=\frac{\sqrt{3}}{2}$$
 である。

練習問題 2. 解答 (3)



円 C_2 の周上の点 A と,円 C_3 の周上の点 B について,線分 AB の長さが最大となるのは,A が T に,B が O にあるときである。したがって,線分 AB の長さの最大値は $\frac{\sqrt{3}}{2}+\frac{3\sqrt{3}}{2}+3=2\sqrt{3}+3$

練習問題 3.

xy 平面上の放物線 $A:y=x^2,\ B:-(x-a)^2+b$ は異なる 2 点 $P(x_1,y_1),\ Q(x_2,y_2)\ (x_1>x_2)$ で交わるとする。

- (1) $x_1 x_2 = 2$ が成り立つとき,b を a で表せ。
- (2) $x_1 x_2 = 2$ を満たしながら a, b が変化するとき, 直線 PQ の 通過する領域を求め, 図示せよ。

練習問題 3. 解答 (1)

点
$$P(x_1,y_1),\ Q(x_2,y_2)\ (x_1>x_2)$$
 は
放物線 $A:y=x^2,\ B:-(x-a)^2+b$ の交点だから,
 x_1,x_2 は,方程式 $x^2=-(x-a)^2+b$ の解である。
整理して, $2x^2-2ax+a^2-b=0$ ···①
解と係数の関係を用いて,
 $x_1+x_2=a,\ x_1x_2=\frac{a^2-b}{2}$
 $x_1-x_2=2$ が成り立つとき,
 $2^2=(x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2=a^2-2(a^2-b)$
 $-a^2+2b=4$ より
 $b=\frac{a^2+4}{2}$

練習問題 3. 解答 (2)

$$b=rac{a^2+4}{2}$$
 より,方程式①は
$$2x^2-2ax+a^2-rac{a^2+4}{2}=0$$

$$4x^2-4ax+a^2-4=0$$

$$\{2x-(a+2)\}\left\{2x-(a-2)\right\}=0$$
 $x=rac{a+2}{2},\;rac{a-2}{2}$ したがって, $x_1=rac{a+2}{2},\;x_2=rac{a-2}{2}$ である。

練習問題 3. 解答 (2)

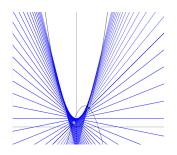
$$y=x^2$$
 上の 2 点 $P(x_1,x_1^2),\ Q(x_2,x_2^2)$ を通る直線は、 $y=\frac{x_1^2-x_2^2}{x_1-x_2}(x-x_1)+x_1^2$ $y=(x_1+x_2)(x-x_1)+x_1^2$ $x_1=\frac{a+2}{2},\ x_2=\frac{a-2}{2}$ だから、 $y=a(x-\frac{a+2}{2})+\left(\frac{a+2}{2}\right)^2$ $y=ax+\frac{-a^2+4}{4}$ a について整理すれば、 $a^2-4xa+4y-4=0$

練習問題 3. 解答 (2)

点 (x,y) が直線の通過領域に含まれる条件は, $a^2-4xa+4y-4=0$ を満たす実数 a が存在することである。 判別式を D として, D

$$\frac{D}{4} = (2x)^2 - (4y - 4) \ge 0 \ \ \, \text{より}$$

$$y \le x^2 + 1$$



練習問題 4.

2つの直線

$$\ell: (k+1)x + (1-k)y + k - 1 = 0, \ m: kx + y + 1 = 0$$

がある。k がすべての実数値をとるとき、 ℓ と m の交点の軌跡を求めよ。

練習問題 4. 解答

$$\begin{cases} \ell : (k+1)x + (1-k)y + k - 1 = 0 \\ m : kx + y + 1 = 0 \end{cases}$$

連立方程式を解いて,交点の座標を求めると

$$\begin{cases} x = \frac{2(1-k)}{k^2+1} \\ y = \frac{k^2-2k-1}{k^2+1} \end{cases}$$

次に,k を消去して x,y の方程式を求めるのが大変。

練習問題 4. 解答

2直線の交点の座標を(X,Y)とおくと,

$$\begin{cases} (k+1)X + (1-k)Y + k - 1 = 0 \cdots 1 \\ kX + Y + 1 = 0 \cdots 2 \end{cases}$$

$$\mathrm{X}
eq 0$$
 であるとき,② より $k = -rac{\mathrm{Y} + 1}{\mathrm{X}} \cdots 3$

- ① を変形して (X Y + 1)k + (X + Y 1) = 0
- ③ を代入して整理して

$$-\frac{(X-Y+1)(Y+1)}{X} + (X+Y-1) = 0$$

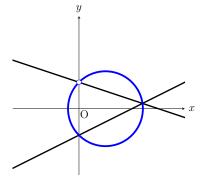
$$X^2 - 2X + Y^2 - 1 = 0$$

$$(X-1)^2 + Y^2 = 2 \cdots 4$$

したがって、交点は中心 (1,0)、半径 $\sqrt{2}$ の円周上にある。 ただし、 $X \neq 0$ 。

練習問題 4. 解答

X=0 であるとき,② より Y=-1 このとき,① より k=1 と定まるので,(0,-1) は 2 直線の交点の軌跡上の点である。また,④ の円周上の点である。したがって求める軌跡は,円 $(x-1)^2+y^2=2$ から (0,1) を除いた図形である。



練習問題 4. 発展 ベクトル利用

$$l: (k+1)x + (1-k)y + k - 1 = 0$$
 k について整理して、 $(x-y+1)k + (x+y-1) = 0$ より、 l は定点 $(0,1)$ を通る。 $m: kx+y+1=0$ k について整理して、 $xk+(y+1)=0$ より、 m は定点 $(0,-1)$ を通る。

練習問題 4. 発展 ベクトル利用

直線 l,m の法線ベクトルは それぞれ $(k+1,1-k),\ (k,1)$ で, そのなす角を θ とすると,

$$\cos \theta = \frac{(k+1, 1-k) \cdot (k, 1)}{\sqrt{(k+1)^2 + (1-k)^2} \sqrt{k^2 + 1^2}}$$
$$= \frac{k^2 + 1}{\sqrt{2(k^2 + 1)} \sqrt{k^2 + 1}} = \frac{1}{\sqrt{2}}$$

したがって、 $\theta = 45^{\circ}$

直線 l,m は常に一定の角度で交わるので,円周角の定理の逆より,交点は同一円周上にあることが導かれる。